Next Generation Fiber-Encapsulated Nanoscale Hybrid Materials for Direct Air Capture with Selective Water Rejection

Project Number DE-FE0031963

A.-H. Alissa Park

Columbia University

U.S. Department of Energy

National Energy Technology Laboratory 2021 Carbon Management and Oil & Gas Research Project Review Meeting August 18, 2021

Program Overview

- a. Funding: \$800,000 DOE + \$200,000 Cost Share
- b. Overall Project Performance Dates: 01/01/2021 06/30/2022
- c. Project Participants:

Columbia University (lead institution: Alissa Park (PI))

Cornell University (Yong L. Joo)

Oak Ridge National Laboratory (Michelle Kidder)

d. Overall Project Objectives

We aim to address direct air capture (DAC) challenges by developing the **next generation fiber-encapsulated DAC sorbent** employing an electrospun, solid sorbent embedded with liquid-like Nanoparticle Organic Hybrid Materials (NOHMs) that will **selectively reject water while allowing facile CO₂ diffusion.**

Team Members

Design, Synthesis and Testing of NOHMs for CO₂ capture

Alissa Park (PI) Annie Lee (GRA) Jeffrey Xu (Postdoc)

Fabrication of nanofibers via electrospinning technology

Kyle Kersey (GRA) Yong Joo (co-PI)

Design and characterization of polymeric materials

Michelle Kidder (co-PI)

Technology Background

Ionic Liquids

CO₂BOLs

CO₂ Binding Organic Liquids

Liquid-like Nanoparticle Organic Hybrid Materials

Ionic Liquids

CO₂BOLs

CO₂ Binding Organic Liquids

Liquid-like Nanoparticle Organic Hybrid Materials

Petit, Bhatnagar & Park, Journal of Colloid and Interface Science (2013)

Ionic Liquids

CO₂BOLs

CO₂ Binding Organic Liquids

Liquid-like Nanoparticle Organic Hybrid Materials

Petit, Bhatnagar & Park, Journal of Colloid and Interface Science (2013)

Ionic Liquids

CO₂BOLs

CO₂ Binding Organic Liquids

Liquid-like Nanoparticle Organic Hybrid Materials

Petit, Bhatnagar & Park, Journal of Colloid and Interface Science (2013)

Introduction of nanoparticles increases the viscosity of the system

→ Need to develop **novel carriers** of NOHMs

Encapsulation of NOHM-I-PEI for CO₂ Capture

Accelerated CO₂ Sorption Kinetics of NIPEI via Increased Interfacial Area

Gas-Assisted Electrospinning

- Sheath of high-speed air promotes faster solvent evaporation than in traditional electrospinning
- Able to utilize faster flow rates to decrease processing time

• Coaxial electrospinning allows control of internal fiber assembly

Hollow V₂O₅/SiO₂ Nanofibers

Panels and Joo, J. Nanomater. (2006)

• Coaxial electrospinning allows control of internal fiber assembly

SiO₂
Nanoparticles
in PI-b-PS
Nanofibers
Kalra and Joo, Small

Hollow V₂O₅/SiO₂ Nanofibers

(2008), (2009)

Panels and Joo, J. Nanomater. (2006)

• Coaxial electrospinning allows control of internal fiber assembly

SiO₂ Nanoparticles in PI-*b*-PS Nanofibers

Kalra and Joo, *Small* (2008), (2009)

Alternating Layers of PI-b-PS Nanofibers

Kalra and Joo, el al., Macromol. (2006), Adv. Mater. (2006)

Hollow V₂O₅/SiO₂ Nanofibers

Panels and Joo, J. Nanomater. (2006)

• Coaxial electrospinning allows control of internal fiber assembly

SiO₂
Nanoparticles
in PI-*b*-PS
Nanofibers

Kalra and Joo, *Small* (2008), (2009)

Alternating Layers of PI-b-PS Nanofibers

 $\begin{aligned} & Hollow \\ & V_2O_5/SiO_2 \ Nanofibers \end{aligned}$

Panels and Joo, J. Nanomater. (2006)

Core (SiO₂)/Sheath (Ni) Nanofibers

Progress and Current Status of Project

Objective: To address direct air capture (DAC) challenges by developing the **next generation fiber-encapsulated DAC sorbent** employing an electrospun, solid sorbent embedded with liquid-like Nanoparticle Organic Hybrid Materials (NOHMs) that will **selectively reject water while allowing facile CO₂ diffusion**.

Thermal Oxidative Stability of NOHMs

Feric T., et al., Submitted manuscript

TGA temperature scan under Air, 0 – 600 C

TGA temperature scan, Rate: 5 K/min

Rate: 10 K/min

• Synthesized NOHMs exhibit improved thermal stability than free polymers (e.g., HPE and PEI)

Recyclability of Thermally Stabile NIPEI-SIPs

1st cycle PEI-SIPs > NPEI-SIPs

→ 20 wt% of inert silica nanoparticles

Objective: To address direct air capture (DAC) challenges by developing the **next generation fiber-encapsulated DAC sorbent** employing an electrospun, solid sorbent embedded with liquid-like Nanoparticle Organic Hybrid Materials (NOHMs) that will **selectively reject water while allowing facile CO₂ diffusion**.

Synthesis of Polymers of Intrinsic Microporosity (PIM-1 and PIM-2)

Incorporate axial chirality into polymeric structure through monomers

Tuning M_w and M_n via reaction time and/or temp.:

PIM-1 BET Surface Area: $743.3 \pm 9.1 \text{ m}^2/\text{g}$ Literature Range: $600-875 \text{ m}^2/\text{g}$

PIM-1

227 kDa (65 °C, 72 hr)

92 kDa (100 °C, 24 hr)

M_w distribution

M_w = 92 kDa

M_w = 63.1 kDa

MW Ranges

PIM-2 BET Surface Area: $513.0 \pm 9.5 \text{ m}^2/\text{g}$ Literature Range: $\sim 600 \text{ m}^2/\text{g}$

PIM-1 Membranes Exhibit High Permeability and Selectivity of CO₂

Thin PIM-1 membranes via solution casting

P.-S. Lee et al. / Microporous and Mesoporous Materials 224 (2016) 332-338

Dry conditions, 25°C, after methanol treatment

Objective: To address direct air capture (DAC) challenges by developing the **next generation fiber-encapsulated DAC sorbent** employing an electrospun, solid sorbent embedded with liquid-like Nanoparticle Organic Hybrid Materials (NOHMs) that will **selectively reject water while allowing facile CO₂ diffusion**.

Development of Micron-Scale PIM-1 Fibers

Electrospinning PIM-1 polymer in 1,1,2,2-tetrachloroethane produces highly uniform micron-scale fibers.

The organic electrolyte [NBu₄]Br is employed to increase the polymeric solution conductivity to decrease fiber dimensions

Common to all images: 18% PIM-1, 2.5% [NBu₄]Br, 12 kV, 15 cm collector distance, 34% relative humidity

**Right: 0.05 mL/min, 15 psi

Below: 0.01 mL/min 10 psi

Below: 0.05 mL/min, 15 psi

Below: 0.01 mL/min, 7.5 psi

Electrospinning Micron-Scale PIM-2 Fibers

Apply methodology for PIM-1 in tetrachloroethane to PIM-2 polymer higher molecular weight ($M_{\rm w}$ = 6,400 kDa).

Consistent fiber production in the 5-10 µm range across flow rates, concentrations, and air pressure.

Right: 17% PIM-2, 0.025 mL/min, 12 kV, 20 cm collector distance, 0 psi, 31% relative humidity

Bottom images: 15% PIM-2, 20 cm collector distance, 45% relative humidity

Below: 0.05 mL/min 12 kV 3 psi

Below: 0.01 mL/min, 12 kV, 3 psi

Incorporating NOHM-I-PEI into PIM-1 Fibers via Coaxial Spinning

Incompatibility between NOHM-I-PEI and PIM-1 solubilities prevent monoaxial spinning approach

Investigating coaxial techniques using NOHM-I-PEI core supported by poly(acrylonitrile) framework and coated with a thin layer of PIM-1. Exploring decoupled vs. equal flow rates

Right: 4 wt% PIM-1, 1.5% NBu4Br, EtCl4 (Shell). 10% NOHM, 6.5% PAN, 1.5 NBu4Br, DMF (Core). 0.025 mL/min, 20 kV, 10 cm distance, 45% relative humidity. (35% NOHM loading)

Phase separation during coaxial spinning creates distinct polymer and NOHM-I-PEI domains.

Left: 2 wt% PIM-1, 1.5% NEt₄Br, 0.06 mL/min, EtCl₄ (Shell). 9% NOHM, 5% PAN, 1.5% NEt₄Br, 0.015 mL/min, DMF. 22.5 kV, 10 cm distance

Solvent Impregnated Polymers & Encapsulated NOHMs in PIM via Electrospinning

High interfacial surface area of microdroplets achieved from high shear emulsification (> 30,000 rpm) yielded faster CO₂ sorption kinetics

SEM-EDS (nitrogen & silicon mapping) of the coaxially electrospun fiber

Enhanced CO₂ Sorption Kinetics of the Monoaxially-Electrospun Fiber

Left: 5 wt% PIM-1, 5% NOHM-I-PEI, 0.5 mL/min, 25 kV, 10 cm collector distance, THF solvent.

Remarkable increase in kinetics of the CO₂ adsorption behavior of the electrospun fiber

Electrospinning technology **eliminates the mass transfer limitation** occurring due to the high viscosity of pure NIPEI

PIM-1 possess **high CO₂ permeability** allowing the rapid CO₂ capture by NIPEI encapsulated in the electrospun fiber

Multi-Cycle CO₂ Capture Test of the Monoaxially-Electrospun Fiber

On average 1.08±0.04 mmol CO2/g sorbent 140 15.8 - 15.6 120 15.4 15.2 100 Temp (°C) 14.4 40 14.2 20 13.8 10 20 0 30 Time (hr)

Initial mass loss attributed to solvent evaporation

Coaxially electrospun fiber retained its working capacity after 9 cycles, exhibiting a long-term stability.

Plans For Future Testing/Development/ Commercialization

In Progress: Improving Quality of PIM-2 Micron-Scale Fibers

SEM imaging of electrospun PIM-2 fibers using 1,1,2,2-tetrachloroethane and [NBu₄][Br].

Although beading is significant, connecting fibers are the correct morphology and are indicative of increased solution dielectric. Fibers are cylindrical and in the 0.5-1.5 micron fiber regime.

Images below:

14 wt% PIM-1 v.2, 1 wt% [NBu₄] [Br], 0.025 mL/min, 15 kV, 20 cm collector distance, 45% relative humidity, 0 psi

In Progress: Refining Coaxial Architecture through Solvent and Core Choice

Screening polymers of various chemical moieties, chain lengths, and solubilities in three polar aprotic solvents.

Exploring encapsulation of branched poly(ethyleneimine) in PIM-1 sheath.

Left: 9 wt% PIM-1, 1.5% NEt₄Br, 0.02 mL/min, EtCl₄ (Shell). PEI-B, 0.005 mL/min (Core). 20 kV, **10 cm distance**.

Right: 9 wt% PIM-1, 1.5% NEt₄Br, 0.02 mL/min, EtCl₄ (Shell). PEI-B, 0.005 mL/min (Core). 20 kV, **15 cm distance**.

In Progress: Combined Multi-gas and Humidity Permeability Cell

In Progress: PALS Characterization at NIST

Positron Annihilation Lifetime Spectrometer

- 1) Apply positron beam
- 2) Positron react with electrons to produce e⁺
- 3) Larger pores → longer e⁺ residence time → more gamma rays detected

Form factor of the sample

Summary

- Successfully synthesized NOHMs with oxidative thermal stability
- Optimized techniques to successfully electrospin PIM-1 and PIM-2 fibers in the 0.8-2-micron dimensional range.
- Tested encapsulated NOHMs and shown promising thermal cyclability and CO₂ capture performance across multiple loading/regeneration cycles
- Milestone: After extensive synthetic optimization, we identified the top 3 candidate polymeric materials to encapsulate NOHMs
 - PIM-1, PIM-2, and TEGO Rad
- Electrospinning polymeric fiber mats onto coarse filter media for increased structural stability

Future Research Plan

		Completed Tasks	Start date	End date
Columbia U	Task 1	Project management and planning		
Columbia	Task 2	Design and Synthesis of NOHMs for CO2 Capture	1/1/21	3/31/21
ORNL		ST 2.1. Synthesis of NOHMs with different amine group	1/1/21	3/31/21
Cornell		ST 2.2. Optimization between CO2 capture capacity and viscosity of NOHMs	1/1/21	3/31/21
		ST 2.3. Characterization and evaluation of pure NOHMs for encapsulation and CO2 capture	1/1/21	3/31/21
ORNL	Task 3	Fabrication of NOHMs/PIM coaxial nanofibers	4/1/21	3/31/22
Cornell		ST 3.1. Enhancement of PIM's hydrophobicity, thermal stability, and mecahnical properties	4/1/21	9/30/21
Columbia	1	ST 3.2. Electrospining of NOHMs/PIM coaxial nanofibers	7/1/21	3/31/22
		ST 3.3. Charaterization of NOHMs/PIM coaxial nanofibers	7/1/21	3/31/22

		Pending Tasks	Q3 07/01/21-09/30/21	Q4 10/01/21-12/31/21	Q5 01/01/2022-3/31/2022	Q6 04/01/2022-06/30/2022
Cornell	Task 4	Fabrication of NOHMs (core)/ceramic (sheath) nanofibers	1,			
ORNL		ST 4.1. Control hydrophobicity of ceramic (OPSZ)				
Columbia		ST 4.2. Conventional monoaxial electrospining of NOHMs and OPSZ mixture				
		ST 4.3. Coaxial electrospining of NOHMs (core) and OPSZ (sheath)				
		ST 4.4. Characterization of NOHMs/ceramic nanofibers				
Cornell	Task 5	Fabrication of air filters with NOHMs/(PIM or ceramic) nanofibers	**			
Columbia		ST 5.1. Deposition of nanofibers on a coarse filter media				
ORNL		ST 5.2. Characterization of nanofibers bearing air filter media				
		ST 5.3. CO2 capture using air filters - fixed bed testing				
		ST 5.4. Long term CO2 capture testing in a lab scale unit with simulated air (with moist)				
		ST. 5.5. Develop thermodynamic and kinetic models for laboratory phase equilibria res				
ORNL	Task 6	Process Modeling and TEA/LCA		• •		
Columbia		ST 6.1. Development of full-scale process models for direct air capture				
Cornell		ST 6.2. Operation of process models to achieve DOE targets				
		ST 6.3. Economic Analysis and Life Cycle Analysis				

Acknowledgements

Dr. Ajay Krishnamurthy Dr. Amanda Forster